Cardiac re-entry dynamics&self-termination in DT-MRI based model of Human Foetal Heart

نویسندگان

  • Irina V. Biktasheva
  • Richard A. Anderson
  • Arun V. Holden
  • Eleftheria Pervolaraki
  • Fengcai Wen
چکیده

The effect of heart geometry and anisotropy on cardiac re-entry dynamics and self-termination is studied here in anatomically realistic computer simulations of human foetal heart. 20 weeks of gestational age human foetal heart isotropic and anisotropic anatomy models from diffusion tensor MRI data sets are used in the computer simulations. The fiber orientation angles of the heart were obtained from the DT-MRI primary eigenvalues. In a spatially homogeneous electrophysiological mono domain model with the DT-MRI based heart geometries, we initiate simplified Fitz-Hugh-Nagumo kinetics cardiac re-entry at a prescribed location in a 2D slice, and in the full 3D anatomy model. In a slice of the heart, the MRI based fiber anisotropy changes the re-entry dynamics from pinned to anatomical re-entry. In the full 3D MRI based model, the foetal heart fiber anisotropy changes the re-entry dynamics from a persistent re-entry to the re-entry self-termination. Time of reentry self-termination depends on the re-entry initial position. Anisotropy of the heart speeds up re-entry self-termination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiac Re-entry Dynamics and Self-termination in DT-MRI Based Model of Human Fetal Heart

The effect of human fetal heart geometry and anisotropy on anatomy induced drift and self-termination of cardiac re-entry is studied here in MRI based 2D slice and 3D whole heart computer simulations. Isotropic and anisotropic models of 20 weeks of gestational age human fetal heart obtained from 100 μm voxel diffusion tensor MRI data sets were used in the computer simulations. The fiber orienta...

متن کامل

Antenatal architecture and activity of the human heart.

We construct the components for a family of computational models of the electrophysiology of the human foetal heart from 60 days gestational age (DGA) to full term. This requires both cell excitation models that reconstruct the myocyte action potentials, and datasets of cardiac geometry and architecture. Fast low-angle shot and diffusion tensor magnetic resonance imaging (DT-MRI) of foetal hear...

متن کامل

FGF10 promotes regional foetal cardiomyocyte proliferation and adult cardiomyocyte cell-cycle re-entry.

AIMS Cardiomyocyte proliferation gradually declines during embryogenesis resulting in severely limited regenerative capacities in the adult heart. Understanding the developmental processes controlling cardiomyocyte proliferation may thus identify new therapeutic targets to modulate the cell-cycle activity of cardiomyocytes in the adult heart. This study aims to determine the mechanism by which ...

متن کامل

DT-MRI Tractography and its Application in Cognitive Neuroscience

Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...

متن کامل

DT-MRI Tractography and its Application in Cognitive Neuroscience

Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017